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1 Introduction

Saul Kripke’s second published paper (after his epoch making “Completeness The-
orem in Modal Logic”) was on Gödel incompleteness. It was written and published
while he was an undergraduate, with the title “ ‘Flexible’ predicates of formal num-
ber theory”. His next major work on incompleteness was presented in a lecture

1I am grateful to Romina Birman, Yale Weiss, and Anandi Hattiangadi for inviting me to join in
remembering and honouring Saul Kripke in this memorial conference. I knew Saul from my senior
year as an undergraduate at Harvard, 1966-67, when I took his courses Phil 151 and Phil 143 in
which he lectured on the topics that became Naming and Necessity, and later we were together at
the Rockefeller University for two years and then in Oxford where Saul twice held a college visiting
fellowship for a whole academic year and visited from time to time for shorter periods.



in Oxford in 1978 under the title, “A model-theoretic proof of Gödel’s theorem”.
Kripke continued to develop insights into the phenomenon of incompleteness in the
forty years after this, and in the last decade four papers of his on incompleteness
have been published. (I’m sure we owe those later publications to the industry and
expertise of the Kripke Center.) In my talk today I will survey these six contribu-
tions to understanding the incompleteness of formal systems.

2 “ ‘Flexible’ predicates of formal number the-

ory” (1962)

Kripke was 19 when he submitted “ ‘Flexible’ predicates of formal number theory”
for publication, and it was published in Proceedings of the American Mathematical
Society in 1962. In this short paper (four pages) Kripke extended Gödel incomplete-
ness from sentences to predicates. It displays extraordinary mastery of Kleene’s
Introduction to Metamathematics, the bible of the subject at that time (a compa-
rable accomplishment to Kreisel’s mastery of Hilbert and Bernays, Grundlagen der
Mathematik as an undergraduate). In a note written much later, Kripke remarks
that as an undergraduate at Harvard he was being discouraged from publishing his
many further results on modal and intuitionistic logic (by Quine and Dreben, I take
it he meant), and says that he published this paper, “almost to show that I could
do something else.” This paper remains relevant to current research, as in the work
of Joel Hamkins.

For a given a base theory F, Kripke calls an m-place predicate Pn(x1, . . . , xm) in the
language of F flexible form-place Σn-formulas iff for every Σn-formula Q(x1, . . . , xm)
with m-free variables, the sentence ∀x1 . . . ∀xm(Pn(x1, . . . , xm) ↔ Q(x1, . . . , xm)) is
consistent with F, i.e. Pn(x1, . . . , xm) can be consistently interpreted to have any Σn-
definable extension. In this paper Kripke proved the existence of flexible predicates.
Mostowski had obtained similar results at that time. In the note I mentioned earlier,
Kripke reports that “When I met Andrzej Mostowski in 1962 at a conference on
modal and many-valued logics held in Helsinki and told him of my proof, he said
that I should have remarked that it was an ‘essential improvement’ over his result,
because he could not get his result for arbitrary systems containing the theory R,
while my version does so.” Kripke also notes that, “Mostowski’s argument was much
longer than mine.”

Joel Hamkins cites this paper of Kripke’s in a number of his papers, in particular,
“The modal logic of arithmetic potentialism and the universal algorithm”, where he
generalizes it to a uniform version: There is a computable sequence of formulas σn(x)
for n ≥ 2, with σn having complexity Σn, such that for any model of arithmetic M
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and any sequence of formulas ϕn coded in M , with ϕn of complexity Σn, there is an
end-extension M∗ of M with M∗ � ∀x(σn(x) ↔ ϕn(x) for all n ≥ 2 (Theorem 22(2),
p. 16). Hamkins obtains this result by use of Woodin’s universal algorithm that
“there is a Turing machine program that can in principle enumerate any desired
finite sequence of numbers, if only it is run in the right universe; and furthermore,
in any model of arithmetic, one can realize any desired further extension of the
enumerated sequence by moving to a taller model of arithmetic end-extending the
previous one” (p. 10)2.

3 Model-theoretic proof of the incompleteness of

arithmetic (1978)

Kripke spent the academic year 1977-78 in Oxford as a Visiting Fellow at All Souls
College. On 2 February 1978 he gave a lecture at the Mathematical Institute on
“A model-theoretic proof of Gödel incompleteness”. The lecture began at 5.00 pm
and finished at 7.30 pm, by which time much of the original audience had left.
One of those who stayed to the end was Joseph Quinsey, a graduate student in the
Mathematical Institute Logic Group who was inspired by that lecture to write his
D.Phil. thesis on Applications of Kripke’s Notion of Fulfilment, supervised by Dana
Scott and Robin Gandy. Another who stayed to the end and talked with Kripke
afterwards was Jeff Paris, who Kripke had asked to attend.

The context in which Kripke carried out this work was the then recent model-
theoretic proof of the incompleteness of Peano Arithmetic obtained by Jeff Paris and
Leo Harrington “A mathematical incompleteness in Peano Arithmetic” published in
the Handbook of Mathematical Logic in which they showed by a model theoretic
proof that a variant of finite Ramsey’s Theorem cannot be proved in PA. For his
own result Kripke introduced his powerful technique of fulfillability, which applies
to systems weaker and stronger than PA, as well as to PA itself. Kripke in a 1982
joint publication with Simon Kochen, “Non-standard models of Peano Arithmetic”
[5], referred to this work briefly (in Section VII (d)), but otherwise never published
it, and so far as I’m aware there is no definitive account of this result in print. Here’s
a brief sketch of it3.

Kripke’s notion of fulfillability is defined in terms of the following game.

Definition 1 (game G) G is a two-player game, played with a sentence A in the
language of arithmetic and a strictly increasing sequence σ, which may be either finite

2I am grateful to Joel Hamkins for information on his use of Kripke’s flexible predicates
3I am grateful to Jeff Paris, Joseph Quinsey, and especially to Alex Wilkie for their help to me

in understanding this result
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or infinite. Since every formula in the language of arithmetic with one or more un-
bounded quantifiers is provably equivalent in PA to a formula in prenex normal form
with no adjacent like quantifiers, we will take A to be in this form, and that, if need
be by inserting an initial vacuous universal quantifier and/or a vacuous existential
quantifier at the end of the quantifier prefix, we will assume that A is either Σ0 (has
no unbounded quantifiers) or is Π2k for k ≥ 1, i.e. ∀x1∃y1 . . . ∀xk∃ykB(x1, y1. . . . , xk, yk)
where B(x1, y1. . . . , xk, yk) is Σ0. Player I picks values for the universal quantifiers
and Player II picks values for the existential quantifiers, according to the rules of
the game; thus for A as described, there are 2k moves in a game. The rules of the
game are as follows: Player I picks an element σ(i) of σ, with the constraint that
if σ is finite, i < l(σ), and then chooses a number m1 < σ(i) by which to instan-
tiate ∀x1. Player II then chooses a number n1 < σ(i + 1) by which to instantiate
∃y1. If there are further quantifiers in the prefix, Player I then picks an element
σ(j) of σ such that j < l(σ) if σ is finite and chooses a number m2 < σ(j) by
which to instantiate ∀x2. Player II then chooses a number n2 < σ(max(i, j) + 1) by
which to instantiate ∃y2. The game continues in this way for each further pair of
quantifiers ∀xi∃yi, and ends when numbers have been picked for all 2k quantifiers
in the prefix of A. At each round of the game, for σ(i1), . . . σ(ir) the elements of σ
chosen as bounds by Player I in this and previous rounds, Player II picks a number
< σ(max(i1, . . . ir) + 1). Player II wins if the Σ0-matrix of A instantiated with the
chosen numbers, B(m1, n1, . . . ,mk, nk) is true. Otherwise Player I wins. If A is Σ0,
i.e. has no unbounded quantifiers, Player II wins if A is true.

Definition 2 (fulfillability of a sentence by a sequence) For A a sentence in
the language of arithmetic that is either Σ0 or Π2k and σ is a strictly increasing
sequence, we say that σ fulfills A if and only if

(1) A is Σ0 and A is true, or

(2) Player II has a winning strategy in the game G (as specified in Definition 1)
played with A and σ.

Lemma 1 Fulfillability of a given sentence A by a given finite sequence σ is ex-
pressible by a Σ0-sentence (i.e. which contains no unbounded quantifiers).

Proof : We give the idea of the proof by considering the case of A as the formula

(1) ∀x1∃y1∀x2∃y2B(x1, y1, x2, y2)

Then a finite sequence σ fulfills A if and only if the Σ0-sentence

(2) (∀i < l(σ))(∀x1 < σ(i))(∃y1 < σ(i+ 1))(∀j < l(σ))(∀x2 < σ(j))
(∃y2 < σ(max(i, j) + 1)B(x1, y1, x2, y2) is true.

Lemma 2 Fulfillability of a sentence A by an infinite strictly increasing sequence σ
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is expressible by a Π1-sentence in the language of arithmetic.

Proof : Fulfillability by an infinite sequence corresponds to fulfillability by a finite
sequence except without a natural number as the length of the sequence. Deleting
the bounds by the length of σ in the formula expressing fulfillability by a finite
sequence, given in the proof of Lemma 1, yields

∀i(∀x1 < σ(i))(∃y1 < σ(i+1))∀j(∀x2 < σ(j))(∃y2 < σ(max(i, j)+1))B(x1, y1, x2, y2)

Lemma 3 A sentence A in the language of arithmetic is true iff some infinite se-
quence fulfills A.

Proof : For clarity we give the argument in terms of A = ∀x1∃y1∀x2∃y2B(x1, y1, x2, y2)

(i) It’s easy to see that if some infinite sequence fulfills A, then A is true:

(ii) To show that if A is true then some infinite sequence fulfills A:

(1) Assume that A is true. Then there exist Skolem functions f1(x1) and f2(x1, x2)
such that ∀x1∀x2A(x1, f1(x1), x2, f2(x1, x2)) is true.

(2) The following recursive definition generates an infinite strictly increasing se-
quence σ:

σ(1) = k for some number k > 0

σ(i+ 1) = max{f1(x1) + 1, f2(x1, x2) + 1, x1 + x2, x1 · x2 : x1 < σ(i) ∧ x2 < σ(i)}

(3) Note that by the condition that σ(i + 1) is closed under addition and multipli-
cation of numbers < σ(i), σ is strictly increasing (even if, for example, there is only
one y1 and one y2 such that ∀x1∃y1∀x2∃y2B(x1, y1, x2, y2).

Definition 3 (a finite sequence is nice) We call a finite sequence nice iff its ini-
tial element exceeds its length.

Definition 4 (a sentence is nicely n-fulfillable) A sentence A is nicely n-fulfillable
by a finite sequence σ (or a finite sequence σ nicely n-fulfills A) iff some nice se-
quence σ of length n fulfills A.

Lemma 4 If A is true, then for every n, there is a nice sequence σ of length n such
A is nicely n-fulfilled by σ.

Proof : Since A is true, by Lemma 3 some infinite sequence σ fulfills A. For any
n, choose a finite portion of σ by beginning with an element of σ bigger than n
and then include the next n− 1 elements. The resulting finite monotone increasing
sequence of length n nicely fulfills A. The proof of Lemma 4 can be formalized in
PA, so
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Lemma 5 For each sentence A in the language of arithmetic,
PA ⊢ (A → ∀x∃σ(l(σ) = x ∧ σ nicely x-fulfills A)).

Kripke then constructed a true Π2-sentence which is unprovable in Peano Arithmetic.
The informal meaning of the Kripke sentence is

∀x∃σ(l(σ) = x ∧ σ nicely x-fulfills A1 ∧ . . . ∧ Ax)

where A1, . . . , Ax are the first x axioms of PA in some given primitive recursive
enumeration. However, this is not a well-formed sentence since the index k of Ak is
not a variable, so cannot be quantified into. What this informal sentence is saying
has strictly to be formulated in arithmetized syntax.

Theorem 6 (model-theoretic proof that PA is incomplete) For K an arith-
metized formulation of the Kripke sentence given above, on the assumption that PA
is consistent there is a non-standard model of PA in which K is false, so PA 0 K,
and on the assumption that PA is Σ2-sound, PA 0 ¬K.

Proof :

(i) Proof that PA 0 K.

(1) Assume PA ⊢ K.

(2) Let M be a non-standard model of PA, which exists by the assumption that
PA is consistent and the compactness theorem for first-order logic. (This is the
one place in the proof where we require the hypothesis that PA is consistent.) By
assumption (1) M � K.

(3) Hence for each pA1 ∧ . . . ∧ Axq for Ai axioms of PA is true in M, and so by
Lemma 5, M � ∀x∃σ(l(σ) = x and σ nicely x-fulfills A1 ∧ . . . ∧ Ax).

(4) Let z be a non-standard number in M. By (3) there is a nice sequence τ such
that l(τ) = z which nicely z-fulfills A1 ∧ . . . ∧ Az in M.

(5) By the niceness of τ , τ(1) > z, so since τ is strictly increasing, all the members
in τ are non-standard. By the least number principle in M, we may take τ(z) to be
minimal among all σ(z) for nice sequences σ that nicely z-fulfill A1 ∧ . . .∧Az in M.

(6) We specify a submodel M∗ of M in terms of τ as follows: M∗ =df

{a ∈ M : for some n ∈ N a ≤ τ(n)}. Since by niceness of τ , z < τ(1), so z ∈ M∗.
By the stipulation of σ(i+1) in the proof of Lemma 3(ii), M∗ is closed under + and
·. We will show that M∗ is a model of pA1 ∧ . . . ∧ Azq.
(7) Suppose PA ⊢ (A1 ∧ . . . ∧ Az ≡ ∀x1∃y1∀x2∃y2B(x1, y1, x2, y2) [This supposition
doesn’t make literal sense for non-standard z, and this condition must be expressed
in arithmetized syntax.] From (4)) we have that τ z-fulfills ∀x1∃y1∀x2∃y2B(x1, y1, x2, y2)

6



in M. Then by Lemma 1, M � (∀i < l(τ))(∀x1 < τ(i))(∃y1 < τ(i + 1))(∀j <
l(τ))(∀x2 < τ(j))(∃y2 < τ(max(i, j) + 1)B(x1, y1, x2, y2)).

(8) Restricting the scope of the bounded universal quantifiers (∀i < l(τ)) and (∀j <
l(τ)) in this last formula to i ∈ N and j ∈ N , we have that
M � (∀i ∈ N)(∀x1 < τ(i))(∃y1 < τ(i+1))(∀j ∈ N)(∀x2 < τ(j))(∃y2 < τ(max(i, j)+
1)B(x1, y1, x2, y2))

(9) Thus by (6), M∗ � ∀x1∃y1∀x2∃y2B(x1, y1, x2, y2), and so by (7) M∗ � A1 ∧ . . .∧
Az.

(10) Since A1∧ . . .∧Az is the conjunction of all the axioms Ai of PA such that i ≤ z
and z is a non-standard number in M∗, for every n ∈ N, n < z. Hence the infinitely
many axioms of PA are all included in this conjunction. So M∗ is a model of PA.

(11) We now show that M∗ 2 K. Suppose
M∗ � ∀x∃σ(l(σ) = x ∧ σ nicely x-fulfills A1 ∧ . . . ∧ Ax). The quantifier ∀x can be
instantiated by z in M∗, so M∗ � ∃σ(l(σ) = z ∧ σ nicely z-fulfills A1 ∧ . . . ∧ Az).

(12) Let ρ be a nice sequence of length z that nicely z-fulfills A1∧. . .∧Az in M∗. The
statement that ρ nicely z-fulfills A1 ∧ . . . ∧Az is Σ0. Hence since M∗ is a submodel
of M, ρ nicely z-fulfills A1 ∧ . . . ∧ Az in M.

(13) Since ρ instantiates an existential quantifier in M∗, its elements are in M∗, so
in particular ρ(z) ∈ M∗, which means that for some k ∈ N, ρ(z) < τ(k). Since k
is a standard number and z is a non-standard number, k < z and since τ in M is
strictly increasing, τ(k) < τ(z), so in M, ρ(z) < τ(z). But as stipulated at (5), τ(z)
is minimal. This contradiction has been derived from the supposition that M∗ � K,
so M∗ 2 K. Since we have at (10) that M∗ is a model of PA, PA 0 K.

Proof that PA 0 ¬K.

(14) We have by Lemma 5 that for each natural number k and A1 ∧ . . . ∧ Ak the
conjunction of the first k axioms of PA,
PA ⊢ ∀x∃σ(l(σ) = x ∧ σ nicely x-fulfills A1 ∧ . . . ∧ Ak).

(15) Then for each natural number k by ∀-elimination
PA ⊢ ∃σ(l(σ) = k ∧ σ nicely k-fulfills A1 ∧ . . . ∧ Ak).

(16) By the assumption that PA is Σ2-sound, PA is Σ1-sound, so for each natural
number k, ∃σ(l(σ) = k ∧ σ nicely k-fulfills A1 ∧ . . . ∧ Ak) is true, and so
∀x∃σ(l(σ) = x ∧ σ nicely x-fulfills A1 ∧ . . . ∧ Ax), i.e. K, is true.

(17) Since ¬K is Σ2, by the assumption that PA is Σ2-sound, PA 0 ¬K. J
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4 “The road to Gödel” (2014)

This paper was published in 2014 in a volume edited by Jonathan Berg that was
based on the proceedings of a conference, “Naming, Necessity, and More”, held at
the University of Haifa in 1999, in honour of Saul Kripke on the occasion of his
being awarded an honorary doctorate. At that conference Kripke gave a lecture,
“The Road to Gödel”, and he lectured under this title a number of other times,
including in Utrecht and in Oxford in February 2001.

Kripke sets out two things he wants to do in this paper: “first, to present the Gödel
theorem as almost the inevitable result of a historic line of thought. I don’t mean
that it did happen that way; I mean that it could have, and perhaps should have
[. . . ]. Second, I want to show that the Gödel statement, the one Gödel proves to be
undecidable in the first incompleteness theorem, makes a fairly intelligible assertion
that can actually be stated” (p. 223).

Kripke argues that the Gödel incompleteness theorem is an inevitable outgrowth of
the inconsistency of the naive (unrestricted) comprehension principle, and indeed
a special case of it, and that this is the best way to understand Gödel incomplete-
ness, rather than as an analogue of the Liar Paradox (which Gödel suggested in his
publication of the result).

Kripke notes that “It is a matter of pure first-order logic that the unrestricted
comprehension axiom schema is inconsistent. Russell already realized this in his
example of the barber who shaves all and only those who do not shave themselves–
. . . the interpretation of the epsilon relation is irrelevant” (p. 228).

Kripke then derives from this fact a non-constructive proof of the incompleteness
of formal systems of arithmetic containing plus and times, i.e. there exists is a true
unprovable sentence in the language of arithmetic, without finding such a sentence
(pp. 232-235). He then goes on to show how consideration in terms of paradox
rather than pure logic can yield a constructive proof of incompleteness. Rather than
using Russell’s paradox, or the Liar, Kripke focuses on Kurt Grelling’s heterological
paradox, which he quotes from Quine (“The ways of paradox”):

The adjective ‘short’ is short; the adjective ‘English’ is English; the adjec-
tive ‘adjectival’ is adjectival; the adjective ‘polysyllabic’ is polysyllabic.
Each of these adjectives is, in Grelling’s terminology, autological: each is
true of itself. Other adjectives are heterological; thus ‘long’, which is not
a long adjective; ‘German’, which is not a German adjective; ‘monosyl-
labic’, which is not a monosyllabic one. Grelling’s paradox arises from
the query: Is the adjective ‘heterological’ an autological or a heterological
one?
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Kripke gives the following account of how to construct the Gödel sentence from
Grelling’s paradox:

Suppose now we try to imitate the ‘heterological’ paradox, only replacing
satisfaction (or ‘true of’) by ‘provability of’. Replacing adjectives, or
adjectival phrases, by formulae with one free variable (Gödel’s ‘class
signs’ – remember that we could even fix the free variable as x1), a
class sign A(x1) is naturally called ‘provable of’ a number n if A(0n) is
provable, or alternatively, as we have seen, if (∃x1)(x1 = 0n ∧ A(x1)) is
provable. Suppose that we identify formulae with their Gödel numbers.
Then a particular formula Pr(x, y) with two free variables says that x
is provable of y. ¬Pr(x1, x1) is a class sign (in Gödel’s sense) that says
that a formula is unprovable of itself. It itself has a particular Gödel
number n, and ¬Pr(0n, 0n) is simply a way of saying:

‘Unprovable of itself’ is unprovable of itself.

This is precisely the statement G constructed by Gödel. Thus the basic
statement G can be called Gödel’s form of the ‘heterological’ paradox,
and to the present writer its content is clearer than if it is regarded in
terms of the Liar paradox.” (pp. 238-239)

5 “Gödel’s theorem and direct self-reference” (2021)

In this short paper (5 pages) published online in The Review of Symbolic Logic in
2021, Kripke demonstrated that contrary to the usual view, stemming from Gödel
(1931), direct self reference need not be contradictory, and it is possible to prove
the first incompleteness theorem with a nonstandard Gödel numbering “allowing a
statement to contain a numeral designating its own Gödel number.” (p. 2). The
trick is the following:

Let the ‘original’ Gödel numbering be Gödel’s own prime power prod-
uct numbering, except that the smallest prime used is 3, so that Gödel
numbers are always odd. In the ‘new’ numbering, all Gödel numbers
coincide with the ‘original’, except that for each n, the formula

∃x1(x1 = 0(2kn) ∧ An(x1)),

gets the Gödel number 2kn, where kn is the original Gödel number of
∃x1(x1 = 0(n)∧An(x1)). The ‘new’ numbering allows a formula to contain
a numeral designating its Gödel number, and in that sense it is a self-
referential Gödel numbering.
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In this self-referential Gödel numbering, every formula An(x1) has an
‘instance’ ∃x1(x1 = 0(2kn)∧An(x1)) asserting that its own Gödel number
satisfies An(x1). The Gödel incompleteness theorem is the special case
where An(x1) is unprovability in the system. (pp. 2-3)

6 “Mathematical incompleteness results in first-

order Peano Arithmetic: a revisionist view of

the early history” (2022)

[History and Philosophy of Logic 43 (2022), pp. 175-182]. When Jeff Paris and Leo
Harrington published their paper, “A mathematical incompleteness in Peano Arith-
metic” in the Handbook of Mathematical Logic, the editor of the Handbook, Jon
Barwise, declared that “Since 1931, the year Gödel’s Incompleteness Theorems were
published, mathematicians have been looking for a strictly mathematical example
of an incompleteness in first-order Peano arithmetic, one which is mathematically
simple and interesting and does not require the numerical coding of notions from
logic”, and claimed that the Paris-Harrington sentence is the first such. In this
paper Kripke takes exception to this claim, incontrovertibly, it seems to me, citing
Gentzen’s proof that transfinite induction of order type ϵ0 is not derivable in Peano
Arithmetic. This does not quite strictly meet Barwise’s criterion, since the Gentzen
theorem requires coding of ordinals < ϵ0. However, Goodstein’s theorem, obviates
that objection by giving a purely number-theoretic formulation of Gentzen’s result
with no coding, though of course to see the truth of the Goodstein sentence does
require coding of base ω notations of ordinals less than ϵ0. But equally the formula-
tion of the finite Ramsey’s Theorem and its variant in the language of PA requires
coding of finite sets of numbers. Kripke also mentions the work of“ Matiyasevich
(1970), building on earlier work by Davis, Putnam, and Robinson, showing that
in any consistent recursively axiomatized system (in which some weak theory such
as R is interpretable), we can effectively find a Diophantine equation that has no
solution, but where this fact cannot be proved in the system.” (p. 177).

7 “The collapse of the Hilbert program: a varia-

tion on the Gödelian theme” (2022)

This paper was published in The Bulletin of Symbolic Logic in 2022. Kripke had
earlier published an extended abstract of an Invited Special Talk on this topic given
at the 2008 winter meeting of the ASL. The usual view is that the Hilbert programme
was shown to be unrealizable by Gödel incompleteness. In this paper Kripke shows
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that the impossibility of Hilbert’s programme was internal to the programme itself.
This new insight comes from Kripke’s demonstration that realization of the Hilbert
programme for Π2-sentences is expressible by a Π0

2-sentence which is about all Π0
2-

sentences, and that this self-application is contradictory.

The key idea of Hilbert’s programme is the ϵ-substitution method, by which provable
formulas of the form ∃xA(x) are replaced by A(ϵxA(x)), where ϵxA(x) denotes any
true instance of A(x) and an arbitrary object of there is none, axiomatized by the
schema A(t) → A(ϵxA(x))) for all terms t in the language. If the Hilbert programme
were realized for a given formal system S, it would establish not only the consistency
of S but also its Σ1-soundness: by the ϵ-substitution method, if S ⊢ ∃xA(x), for
A(x) a Σ0-formula, then A(ϵxA(x)) is true. But it would do more than this. It would
establish Π2-soundness, since if S ⊢ ∀x∃yB(x, y), then for all n, S ⊢ ∃yB(n, y), so
by Σ1-soundness of S, ∀x∃yB(x, y) is true. Kripke’s key insight here is that the
realization of Hilbert’s programme in (a weak, i.e. finitary subsystem of) a system
S for Π2-sentences in the language of T can itself by expressed by a Π2-sentence in
the language of S, call it K, and that the realizability of the Hilbert programme
for S is tantamount to S ⊢ K. Kripke derives a contradiction from the supposition
that S ⊢ K, and establishes thereby that Hilbert’s programme is not realizable.

The realization of the Hilbert programme for Π2-sentences provable in a system S
means that:

(1) For any Π2-sentence ∀x∃yA(x, y), if S ⊢ ∀x∃yA(x, y), then for every x there
is some number n such that S ⊢ A(x, n). We can formalize this statement in
arithmetized syntax by expressing the following predicate and relation:

(2) B(x) to express “x is the Gödel number of a proof in S of a Π2-sentence
∀x∃yA(x, y)”

(3) C(x, y) to express “there is a number n < y such that y is the Gödel number of
a proof of A(x, n)”

(4) B(x) and C(x, y) are expressible by Σ0-formulas.

(5) Statement (1) can be expressed in arithmetized syntax of S by
∀x∃y(B(x) → C(x, y)), which by (4) is a Π2-sentence.

(6) Note that (5) does not literally express (1) since the x in C(x, y) is not an
arbitrary number but the Gödel number of a proof of a given Π2-sentence. However,
there is no loss of generality in this formalization since the point of the argument is
to show that (1) is not provable, and if a literal formalization of (1) were provable,
(5) would be provable by universal instantiation.

(7) Note also that the condition in (3) that n < y reflects the fact that the numeral for
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n occurs in the proof whose Gödel number is y (so it’s an artefact of arithmetization).

(8) Suppose that a is the Gödel number of a proof in S of ∀x∃y(B(x) → C(x, y)).

(9) Application of the ϵ-substitution method and (8) yields a number b and a proof
in S of (B(a) → C(a, b))

(10) By the least number principle, we may take b to be the least y such that
(B(a) → C(a, ẏ)) has a proof in S.

(11) By (5) and (8), a is the Gödel number of a proof of a Π2-sentence, so by (2),
(4), and Σ0 completeness of any theory in which arithmetization of syntax can be
carried out, S ⊢ B(a).

(12) Hence by (9), S ⊢ C(a, b)

(13) Then by (3), there is a number n < b such that b is a proof of
(B(a) → C(a, n)).

(14) This contradicts and therefore refutes supposition (10), which was on the basis
of supposition (8), so there is no proof in S of ∀x∃y(B(x) → C(x, y)), which es-
tablishes that the Hilbert programme cannot be realized (pp. 423-424). This result
transforms our understanding of Hilbert’s programme.

Two remarks about the failure of Hilbert’s programme:

(1) What failed was the Hilbert programme as originally conceived, i.e. looking for
proofs of the consistency of infinitary branches of mathematics by finitary means,
where finitary mathematics is a subpart of infinitary mathematics. Gentzen, working
on Hilbert’s programme under supervision from Bernays and Hilbert, gave a consis-
tency proof for Peano Arithmetic using ϵ0-transfinite induction applied to finitary
mathematics, which is not provable in PA, but is constructive though not finitary (as
Gödel later noted), which made the development of Hilbert’s programme tenable,
and it continued as proof theory, one of the four main branches of mathematical
logic, to the present day (as shown by the recently published textbook on proof
theory [13]).

(2) While Kripke showed, without question, that the impossibility of realizing Hilbert’s
programme as originally conceived by Hilbert does not depend on Gödel’s incom-
pleteness theorems—in particular the second incompleteness theorem—but is in-
trinsic to the programme itself, we should remark, as Kripke does (p. 424) that
his proof of this fact relies on the arithmetization of syntax by which Gödel proved
his incompletenesss theorems. At the same time one can say that arithmetization
of syntax itself was implicit in Hilbert’s programme, as when he said in his 1925
lecture “On the infinite”, “a formalized proof, like a numeral, is a concrete and sur-
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veyable object.” ([4], p. 383), but it was only Gödel who realized the game-changing
implications of this insight.

The structure of Kripke’s proof is reminiscent of his model-theoretic proof of incom-
pleteness of arithmetic, which Kripke remarks about in footnote 7 of this paper: “I
myself arrived at the present result through a circuitous route. I had already found
a purely model-theoretic version of the Gödel theorem and realized that it could also
be carried out syntactically, using appropriate finite approximations and semantic
tableaux. But then I saw that the ladder could be kicked away and that, formulated
in detail, the result the Hilbertians were attempting to obtain in fact implies its own
impossibility.”

If I may be permitted an entirely personal remark, I am very struck by an acknowl-
edgment by Kripke related to this last remark: “I am indebted to Burton Dreben
for his insistence that the Hilbert program or approach (Ansatz) was not merely to
prove the consistency of mathematics by finitary means, but was a specific program
for interpreting proofs. Thus, as Dreben emphasized, it is a kind of constructive
model theory.” (p. 424). From time to time over many years I heard Saul express
resentment at Dreben as having been unsupportive or even discouraging of his work
on modal logic when he arrived at Harvard as an undergraduate. That Saul writes
with such warmth and appreciation of having learned something from an idea that
was quite central to Dreben’s thinking is very striking to me, and—given my own af-
fection for Dreben, who was my undergraduate tutor, and my affection for Saul—it’s
gratifying to me to see this rapprochement.

8 Conclusion

These six contributions by Saul Kripke to understanding incompleteness of formal
systems of arithmetic and other systems, are very rich. They are also very diverse,
and don’t, as such, constitute a research programme. Rather each one gives us a gem
of new understanding of the phenomenon of incompleteness, though that said, there
is a very striking connection between the model-theoretic proof of incompleteness
and the proof-theoretic internal refutation of Hilbert’s programme, as Kripke notes.
Both establish Π2-incompleteness, and both make central use of the least number
principle.

These contributions differ one from another in the extent to which they are math-
ematical or philosophical. I would classify as primarily mathematical the paper on
flexible predicates, the model-theoretic proof of incompleteness, and the paper on
Gödel’s theorem and direct self-reference. The paper on the collapse of the Hilbert
programme obtains a result that’s highly significant mathematically and philosoph-
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ically. The “revisionist” view of the early history of incompleteness results is mainly
philosophical. The mathematical results in these contributions display tremendous
ingenuity. What all these contributions have in common is the uniqueness of their
viewpoint, inviting us to think differently about each of these topics.
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[10] Saul Kripke, “Gödel’s theorem and direct self-reference”, The Review of Sym-
bolic Logic published online 2 December 2021, 5 pp.

[11] Saul Kripke, “The collapse of the Hilbert program: a variation on the Gödelian
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